Fish Production & Density

LO: extrapolate how temporal variation potentially influences world fisheries catches, sustainability, and food security

World Fisheries Catch

Million tonnes

Catch & Aquaculture

Catch

FAO 2006, 2012, 2016

Fish Catch

Diverse ~ 25,000-30,000 species, nearly 500 families, 1/2 marine species (Jennings et al. 2001)

					VARIATION			
SCIENTIFIC NAME	FAO ENGLISH NAME	AVERAGE 2003-2012	2013	2014	AVERAGE (2003- 2012) -2014	2013- 2014	2013-2014	
			(Tonnes)		(Percentage)		(Tonnes)	
Theragra chalcogramma	Alaska pollock (= walleye pollock)	2 860 840	3 239 296	3 214 422	12.4	-0.8	-24 874	
Engraulis ringens	Anchoveta (= Peruvian anchovy)	7 329 446	5 674 036	3 140 029	-57.2	-44.7	-2 534 007	
Katsuwonus pelamis	Skipjack tuna	2 509 640	2 974 189	3 058 608	21.9	2.8	84 419	
Sardinella spp.1	Sardinellas nei	2 214 855	2 284 195	2 326 422	5.0	1.8	42 227	
Scomber japonicus	Chub mackerel	1 804 820	1 655 132	1 829 833	1.4	10.6	174 701	
Clupea harengus	Atlantic herring	2 164 209	1 817 333	1 631 181	-24.6	-10.2	-186 152	
Thunnus albacares	Yellowfin tuna	1 284 169	1 313 424	1 466 606	14.2	Million tonnes (live		
Decapterus spp.1	Scads nei	1 389 354	1 414 958	1 456 869	4.9			
Scomber scombrus	Atlantic mackerel	717 030	981 998	1 420 744	98.1	12 -		
Engraulis japonicus	Japanese anchovy	1 410 105	1 329 311	1 396 312	-1.0	40		
Gadus morhua	Atlantic cod	897 266	1 359 399	1 373 460	53.1	1 10		
Trichiurus lepturus	Largehead hairtail	1 311 774	1 258 413	1 260 824	-3.9	8		
Sardina pilchardus	European pilchard (= sardine)	1 088 635	1 001 627	1 207 764	10.9			
						6 —		

ςς

FAO 2016

Invertebrate Production & Catch

- molluscs (~50,000 species, including squid) ~7%
- crustaceans (~35,000 species; esp. shrimp and prawns) ~6% of total landings (Jennings et al. 2001)

Catch Locations & Management

Average per capita fish supply (in live weight equivalent)

0-2 kg/year 10-20 kg/year 2-5 kg/year 20-30 kg/year 5-10 kg/year 30-60 kg/year

> 60 kg/year

GLOBAL TRENDS IN THE STATE OF WORLD MARINE FISH STOCKS SINCE 1974

At biologically unsustainable levels
Within biologically sustainable levels

FAO 2014, 2016

World Fish Supply & Use

UTILIZATION OF WORLD FISHERIES PRODUCTION (BREAKDOWN BY QUANTITY), 1962–2014

Aquaculture Trends

WORLD AQUACULTURE PRODUCTION VOLUME AND VALUE OF AQUATIC ANIMALS AND PLANTS (1995–2014)

2010 Total Capture + Aquaculture

Fish Price Index

Data from Norwegian Seafood Council

Fish Production: physiology

Physiological & organismal perspective 2 approaches:

- 1. Size Dependent Function (e.g. von Bertalanffy)
 - based on mass, not food dependent

$$\frac{dw}{dt} = Hw^m - Dw^n$$

food metabolism intake

- growth as two size-dependent functions
- basis of Beverton & Holt model

Fish Production: physiology

- 2. Mass Balance (e.g. Winberg 1956)
- based on food consumption

$$\frac{\Delta W}{\Delta t} = aR - T$$

$$a = fra$$

$$R = R$$

$$T = Me$$

a= fraction assimilated

R= Ration

T=Metabolism

Energy Equation: Winberg (1956)

Growth = Consumption - (Metabolism + Wastes)

Cod Predation Bioenergetic Summary

Model Component	8 capelin	12 capelir	
Ration	1057 kJ	1585 kJ	
Egestion and Excretion	-317 kJ	-476 kJ	
Maintenance	-58 kJ	-58 kJ	
Digestion	-125 kJ	-188 kJ	
Swimming	-79 kJ	-79 kJ	
Surplus Energy	478 kJ	784 kJ	
	45%	49%	

Factors Affecting Metabolism

- 1. **Temperature** controlling factor (10°C increase 2x metabolism)
 - affects chemical breakdown: log_{10} (O₂) \propto T^{0.036}
 - standard metabolism (SM) increases with T, active metabolism (AM) peaks then declines
- 2. Starvation SM decreases logarithmically, AM no change
- 3. Limiting factors: O_2 (amount of water past gills)
- 4. Masking factors: toxics, particulates
 - particulates increases SM x 2 in salmon at 1/10 LD_{50(96 hours)}
- 5. Directive factors: diurnal, seasonal rhythms

+ multiple stressors: direct and indirect effects

Northern Cod Production Decline

Estimating Walleye Pollock Production

Megrey et al. 1996

Walleye Pollock EBS Catch

Bottom Trawl & Acoustic Biomass Estimates

SAFE 2016

Potential Influence of Water Temperature?

Kotwicki et al. 2009

SAFE 2016

Pollock Abundance Estimate

- population sustained by single cohorts after recruiting to fishery
- occurrence of large cohort aperiodic and unpredictable
- large age-1 abundance may not result in large year class
- 2006, 2008 may be large year classes. 2013?

Acoustic, Bottom Trawl, Commercial Abundance at Age Estimates

Age

SAFE 2016

Abiotic and Biotic Effects

Barents Sea Capelin

What influences capelin production?

- overlap with herring and cod predators
- water temp influences herring and cod more than capelin
- results in a lagged effect on capelin due to predation 1 to 2 years after warm year (which increases herring and cod)

Hjermann et al. 2004